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The obligate intracellular bacterium Wolbachia pipientis infects
around 20% of all insect species. It is maternally inherited and
induces reproductive alterations of insect populations by male
killing, feminization, parthenogenesis, or cytoplasmic incompati-
bility. Here, we present the 1,445,873-bp genome of W. pipientis
strain wRi that induces very strong cytoplasmic incompatibility in
its natural host Drosophila simulans. A comparison with the pre-
viously sequenced genome of W. pipientis strain wMel from
Drosophila melanogaster identified 35 breakpoints associated with
mobile elements and repeated sequences that are stable in Dro-
sophila lines transinfected with wRi. Additionally, 450 genes with
orthologs in wRi and wMel were sequenced from the W. pipientis
strain wUni, responsible for the induction of parthenogenesis in
the parasitoid wasp Muscidifurax uniraptor. The comparison of
these A-group Wolbachia strains uncovered the most highly re-
combining intracellular bacterial genomes known to date. This was
manifested in a 500-fold variation in sequence divergences at
synonymous sites, with different genes and gene segments sup-
porting different strain relationships. The substitution-frequency
profile resembled that of Neisseria meningitidis, which is charac-
terized by rampant intraspecies recombination, rather than that of
Rickettsia, where genes mostly diverge by nucleotide substitu-
tions. The data further revealed diversification of ankyrin repeat
genes by short tandem duplications and provided examples of
horizontal gene transfer across A- and B-group strains that infect
D. simulans. These results suggest that the transmission dynamics
of Wolbachia and the opportunity for coinfections have created a
freely recombining intracellular bacterial community with mosaic
genomes.

horizontal transfer � recombination � ankyrin repeat gene �
genome evolution � insect symbiosis

Wolbachia pipientis are intracellular �-proteobacteria of the
order Rickettsiales that infect insects as well as isopods, spiders,
scorpions, mites, and filarial nematodes (1, 2). These bacteria
represent a single species, with strains classified into super-
groups, of which the most abundant are supergroups A and B.
A lack of concordance between host and bacterial strain phy-
logenies indicate frequent host shifts in addition to maternal
inheritance within the individual host (1–4). In insect popula-
tions, Wolbachia induce reproductive manipulations to enhance
their own spreading. The most frequently observed reproductive
abnormality is cytoplasmic incompatibility (CI) (1, 2, 5), where
uninfected females are unable to produce offspring with infected
males, whereas infected females can produce offspring with both
infected and uninfected males, thus creating a reproductive
advantage for infected females. Other spectacular effects of
Wolbachia infections are male embryo killing, feminization, and
parthenogenesis induction (1, 2).

Three genomes of Wolbachia have been published to date. The
A-group strain wMel from Drosophila melanogaster (6) and the
B-group strain wPip from the mosquito Culex quinquefasciatus

(7) are both reproductive parasites that cause CI, whereas the
D-group strain wBm is an obligate mutualist in the nematode
Brugia malayi (8). The 1.27-Mb genome of wMel and the
1.48-Mb genome of wPip contain several prophages and high
frequencies of repeated sequences, including many IS-elements.
These genomes have a large repertoire of genes with ankyrin
repeat motifs, 23 in wMel and 60 in wPip, several of which are
associated with mobile elements (6, 7). In contrast, the 1.08-Mb
genome of strain wBm contains no prophage, only a few ankyrin
repeat genes and a much lower fraction of repeated sequences,
possibly reflecting its mutualistic adaptation to a single-host
species.

Sequence comparisons of single genes from multiple strains
have provided evidence for recombination (9–12) and horizontal
transfer of prophages and insertion sequence (IS)-elements
across Wolbachia strains (13–16). However, the distant relation-
ship of the 3 sequenced Wolbachia genomes, manifested as an
almost complete lack of gene-order conservation and synony-
mous substitution frequencies that are close to saturation, has
precluded attempts to infer patterns and rates of recombination
at the whole-genome level. Thus, with the exception of a few
single-gene studies, the extent to which recombination distorts
the evolutionary coherence of Wolbachia genomes is currently
unknown.

We report here the complete genome sequence of the super-
group-A Wolbachia strain wRi that naturally infects Drosophila
simulans and induces almost complete CI in its host (17, 18).
Additionally, we present partial genome data of Wolbachia strain
wUni from Muscidifurax uniraptor, likewise a supergroup-A
strain that induces parthenogenesis in its host (19). A compar-
ison of these 2 A-group Wolbachia strains with the previously
sequenced genome of the A-group strain wMel reveals the most
highly recombining obligate intracellular bacterial community
examined to date.
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Results and Discussion
General Features of the Wolbachia wRi Genome. The complete
genome sequence of Wolbachia pipientis wRi from Drosophila
simulans is a single circular chromosome of 1,445,873 bp, with
1,150 potential protein-coding sequences and 114 pseudogenes
(Fig. 1). We identified 4 prophage segments, here called wRi-
WOA, wRi-WOB (present in identical duplicates), and wRi-
WOC. Additionally, we found 35 genes coding for proteins
containing one or more ankyrin repeat (ANK) domain [Tables
S1–S3] as compared to 23 such genes annotated in the 1.27-Mb
genome of wMel (6). Of the genes solely present in either the wRi
or the wMel genome for which a function or domain hit can be
identified, the large majority encodes phage proteins, trans-
posases and ANK proteins (Tables S4–S6).

Overall, the wRi genome contains 22.1% repeated sequences,
as compared to 8.9% in wMel (� 200 bp, 95% sequence
identity). About 10% of the wRi genome is covered by IS-
elements; these represent 11 different types, including 67 com-
plete copies, 48 copies with frameshifts or internal stop codons,
and 11 truncated copies. A total of 46 genes have been disrupted
by IS-element insertions, of which 19 are hypothetical proteins,
10 are transposases, and 5 are ANK genes. Furthermore, more
than 200 insertions of the Wolbachia palindromic element (20)
or remnants thereof were found in the genome of wRi and of
these, 43 were inserted into genic sequences. The Wolbachia
palindromic element is also present in wMel and wUni, but not
always in the same genes or at the same locations. The most
abundant 23-bp hairpin-loop structure is present in 79 copies in
the wRi genome, in 91 copies in wMel, but only once in wBm.

Genome Integrity Following Host Shifts. A comparison of the
structures of the wRi and wMel genomes revealed 35 gene-order
breakpoints (Fig. S1), 17 of which are flanked by IS-elements, 11

are located within or flanked by prophage sequences, and 6 are
flanked by long repeats. The final breakpoint contains a 22-bp
hairpin structure with a 4-bp loop. Among these breakpoints, 6
are close to genes encoding reverse trancriptase and 3 to genes
encoding DNA recombinase. This shows that mobile genetic
elements and repeated sequences are hot spots for rearrange-
ments in Wolbachia. To examine the stability of these recombi-
nation hot spots, we used PCR to analyze all breakpoints from
genomic DNA of wRi isolated from naturally infected and
transinfected symbiotic associations of D. simulans, Drosophila
yakuba, Drosophila teisseiri, and Drosophila santomea, which have
been kept in laboratory conditions from 8 to 15 years (Table S7).
The results of this survey showed that the wRi genome remains
stable in structure over these sites and suggests that the wRi
genome does not oscillate between different genomic structures,
nor do host switches trigger rearrangements at these sites. The
observed short-term stability indicates that the recombination
frequencies at these repeated sequences are lower than could be
detected over this time period.

The A-Group Wolbachia Strains are Evolutionary Genome Mosaics. We
estimated the nonsynonymous (Ka) and synonymous (Ks) sub-
stitution frequency per site to quantify sequence divergences
across strains, although these values may not correspond to
actual substitutions if genes evolve mainly by recombination. For
851 positional homologs in the wRi and wMel genomes identified
by reciprocal BLAST searches (excluding phage genes), the
median Ka and Ks values were estimated to be 6.2 � 10�3 and
3.2 � 10�2 substitutions per site, respectively, with a more than
500-fold variation in Ks-values across genes (Fig. S2a). A similar
spectrum of divergences between wRi and wMel was observed
for 343 core genes that are conserved across 3 Wolbachia strains
(wRi, wMel, and wBm), Orientia tsutsugamushi, and 8 Rickettsia
species (as defined in ref. 21) (Fig. S2b), suggesting that these
estimates are not inflated by the inadvertent inclusion of inac-
tivated gene fragments.

To investigate the mechanisms underlying the remarkable
variation in Ks-values across genes, we sequenced orthologous
genes in wUni, another A-group Wolbachia strain, using wMel as
the reference genome. A 3-strain comparison of 450 sequenced
orthologs showed a broad variability of Ks-values (Fig. 2A) that
did not correlate with functional categories (Mann-Whitney and
Kolmogorov-Smirnov tests using Bonferroni-Holm correction,
P � 0.05 for all COG categories) (Fig. S2c). One-third of the
genes were most similar in wMel and wRi, including 52 orthologs
with no synonymous sustitutions. Another one-third indicated
the highest sequence similarity for wMel and wUni, of which 26
have no synonymous substitutions. Finally, one-fifth of the genes
were most similar in wRi and wUni, with 22 lacking synonymous
substitutions. Only 40 genes showed no substitutions at synon-
ymous sites in any of the 3 pairs. Such a complex pattern of
sequence divergences indicates extensive recombination.

To obtain a simple measure of the relative levels of recom-
bination for comparisons across species, we calculated the spread
of the relative Ks-values as the median distance to the average
relative Ks-values in the ternary plots (see Fig. 2). Notably, the
level of recombination thus inferred was higher in Wolbachia
(spread � 0.42) (see Fig. 2 A) than in Neisseria meningitidis
(spread � 0.34) (see Fig. 2C), which is naturally competent for
transformation and highly recombining (22). The level was twice
as high as in its close relative Rickettsia (spread � 0.19) (see Fig.
2B), where the lowest Ks-values were typically associated with 1
pair of strains, as expected in nonrecombining bacteria.

Additionally, of the 450 orthologous genes found in wRi,
wMel, and wUni, intragenic recombination was detected in 129
genes by at least 2 different methods implemented in RDP3 (23).
Genes for which intragenic recombination was detected by
recombination detection program (RDP) were concentrated to
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Fig. 1. Circular map of the Wolbachia pipientis wRi genome. Each circle
confined by the gray lines except for the 2 innermost circles illustrates differ-
ent features on the plus (outer region) and minus (inner region) strands. Lines
and boxes in the 3 outermost circles are colored according to the Clusters of
Orthologous Groups (COG) categories. First (Outer) circle: protein-coding
genes (CDSs). Second circle: pseudogenes. Third circle: unique CDSs compared
to wMel. Fourth circle: ANK genes in blue and gene synteny breakpoints
compared to wMel in red. Fifth circle: prophage regions in green (not affili-
ated to a strand) and IS elements color-coded as described in Table S5. Sixth
circle: a diagram showing the synonymous substitution frequency (Ks) be-
tween wRi and wMel potential orthologs; the maximum cut-off was set to
Ks � 1. Seventh circle: GC-skew of the wRi genome.
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the middle of the inner triangle (spread � 0.27), whereas genes
with no detected recombination were more spread out (spread �
0.56) in the ternary plot (Fig. S2d). Genes located near different
corners of the inner triangle in the ternary plot provide the
strongest evidence for inconsistency in the phylogenetic signal.
As no conflict in signal was detected by RDP within these genes,
it is likely that recombination has occurred over the complete
sequences in many cases. Taken together, this indicates that at
least three-fourths of the genes that were analyzed are affected
by recombination.

The switches in sequence similarity patterns within gene
alignments is here illustrated with the gene for Leucyl-tRNA
synthetase (LeuRS), where 1 region was found to be identical in
wMel and wUni, but contained many substitutions in wRi,
followed by a divergent segment in wUni that was identical in
wRi and wMel (Fig. 3A). Another example is the virB10 gene,
where the 5�-part of the wRi gene clustered with the A-group
strain wAtab3 from the braconid wasp Asobara tabida (Fig. 3B),
whereas the 3�-part of the same gene clustered with the B-group
strains wTai, from the Taiwan cricket, Teleogryllus taiwanemma,
and wPip, from the mosquito Culex quinquefasciatus (Fig. 3C).

Rapid Diversification by Expansion-Contraction of Tandem Repeats.
We classified the 35 ANK genes identified in the wRi genome
into 3 different groups based on the extent of sequence diver-
gence from their homologs in wMel (see Tables S1–S3). One-
third, 13 genes, are highly conserved in length, domain organi-
zation, and nucleotide sequence (Ks �0.05). Another 12 genes
showed variability in the number of ANK domains and gene
length plus high sequence divergence (Ks 0.1 to �1.0), although

they are located in segments with otherwise conserved gene-
order structures. The final 10 genes lacked homologs in wMel.

To study the relationships of the ANK domains within and
among genomes, we performed a Bayesian phylogenetic analysis
of 319 ANK domains identified in the wRi, wMel, and wUni
genomes (Fig. 4). The ANK domains found in the highly
conserved genes clustered with the corresponding domains in
the other strains. In contrast, several ANK domains in the
variable gene set clustered with other domains in the same gene.
In these cases, variability in domain numbers and organization
is generated by expansion or contraction of repeated sequences,
with the repeated unit often spanning across the borders of the
ANK domains (Fig. S3). The ANK protein WRi�003070 is
particularly interesting; the N-terminal repeats are most similar
to wMel and the repeats in the middle part to wUni, with recent
duplications of ANK domains in both wRi and wUni (see Fig.
S3). Additionally, this is the only wRi ANK gene that is solely
transcribed in female adults and ovaries, but not in male adults
and testes (Tables S9 and S10).

Gene Transfer Across Supergroups. Of the combined 58 ANK genes
in the wRi and wMel genomes, 31 are located near to prophages
and many of these are unique to the individual strain and may
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have been acquired recently. One such gene, WRi�006870, is
located near phage wRi-WOC. Although the gene is absent from
the other 2 A-group strains, homologs were identified in wNo,
wMa, and wMau B-group strains that like wRi use D. simulans
as their natural host. The gene is not transcribed in early or late
(overnight) embryos in wRi, not in testes and early embryos in
wNo and not in adult males in wMau: that is, this ANK gene
exhibits stage-specific expression patterns in both A- and B-
group genomic backgrounds (see Tables S9 and S10). A phy-
logeny based on the minor capsid protein shows that wRi-WOC
clusters with one of the prophages in wNo (Fig. S4), indicating
that prophage wRi-WOC, along with some of its associated ANK

genes, may have been acquired from the B-group strains. Trans-
mission of phages between Wolbachia strains of different super-
groups that infect the same host has been seen in moths (14) and
has also been shown to occur between wNo and wHa during
coinfections of D. simulans in the laboratory (15).

In contrast, no examples of horizontal gene transfer between
the A-group strains and the D-group Wolbachia strain wBm were
observed, consistent with the absence of prophages and low
levels of recombination in mutualistic Wolbachia strains (24).
Likewise, mutualistic endosymbionts of aphids show low recom-
bination frequencies and have the most stable bacterial genomes
identified to date (25). This dramatic difference in recombina-
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Fig. 4. Clustering of ankyrin repeat domains from wRi, wMel, and wUni using Bayesian phylogenetic inference. The colors on the branches indicate different
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5728 � www.pnas.org�cgi�doi�10.1073�pnas.0810753106 Klasson et al.

http://www.pnas.org/cgi/data/0810753106/DCSupplemental/Supplemental_PDF#nameddest=ST9
http://www.pnas.org/cgi/data/0810753106/DCSupplemental/Supplemental_PDF#nameddest=SF4


tion may reflect variability in host-adaptation strategies, access
to mobile elements, and different sets of recombination genes
(15), as well as increased possibilities for rare genome variants
to reach fixation in such populations (26, 27).

Wolbachia Sequences in Drosophila Genome Assemblies. Wolbachia
sequences were previously identified in the trace archive files of
both the D. simulans and the Drosophila ananassae genome
projects and assumed to originate from contaminating bacterial
DNA (28), a discovery that was followed by a debate about
whether any corresponded to wRi (29, 30). The more recent
finding that Wolbachia genes have been transferred into the
nuclear genomes of D. ananassae and other hosts (31–34) further
added complexity with regards to the origin of these sequences.

Using BLAST, we recovered 73 scaffolds from the FlyBase
assembly of the D. ananassae genome containing 177 kb (ex-
cluding gaps) that partially or fully matched wRi sequences, some
of which are currently annotated as D. ananassae genes in both
GenBank and FlyBase. We did not identify any wRi sequences
that are shared with wMel, presumably because the wMel
genome was used to filter out Wolbachia reads. A comparison to
the wRi genome revealed the absence of 2 IS-elements within
scaffolds of otherwise conserved gene-order structures, suggest-
ing that the Wolbachia sequences in the D. ananassae genome are
similar but not identical to the wRi genome. In contrast, no wRi
sequences were identified in the FlyBase assembly of the D.
simulans genome. Furthermore, amplification of wRi ANK and
VIR sequences by PCR from D. simulans treated with tetracy-
cline failed. We conclude that a corresponding transfer of
Wolbachia genes into the nuclear genome of D. simulans is not
likely.

Patchy Wolbachia Populations. Pervasive recombination in para-
sitic Wolbachia destroys the anticipated correlation between
gene history, genome history, and strain phenotype. The wsp
surface protein has been extensively used for genotyping but was
found to be especially prone to recombination (9, 35) and 2
different sets of housekeeping genes, gatB, coxA, hcpA, fbpA, ftsZ
(11) and aspC, atpD, sucB, and pdhB (12) were proposed as an
alternative. However, not even these genes are protected from
recombination events (11) and our comparisons of wUni, wMel,
and wRi show divergences at synonymous sites ranging from
Ks � 0 in aspC to Ks � 0.1–0.2 for gatB, with different genes and
segments of genes supporting different strain relationships.
Hence, no single gene sequence will accurately describe the
relationships of these A-group Wolbachia strains.

The global Wolbachia population is likely to consist of many
subpopulations, or patches (36), where the boundaries are
defined by, for example, geography or host specificity. Recom-
bination among strains is expected to be frequent within patches,
but less so between patches. For example, mutualistic adapta-
tions to a single host may lead to the isolation and evolution of
a subpopulation with limited recombination, as is possibly the
case in nematode Wolbachia. While multilocus sequence typing
may be useful to characterize supergroups, the intense recom-
bination seen between A-group strains indicates that character-
ization of genotypes might require analysis at the whole genome
level. However, as selection is expected to act on traits involved
in host-adaptation processes within a patch, such genes may be
useful to identify ‘‘fitness types,’’ although not conferring any
information that is meaningful in a phylogenetic sense.

Future Perspectives. The availability of complete genome se-
quence data for the model organisms D. melanogaster and D.
simulans, as well as for their respective Wolbachia endosymbi-
onts, offers an excellent opportunity to study host-adaptation
processes by monitoring the coevolution of host and endosym-
biont gene interactions in natural and transinfected hosts. Rapid

diversification of the ANK genes by segmental gene duplication
may reflect diversifying selection to match a divergent set of
target molecules in different cells, tissues, and hosts. To test this
hypothesis, target proteins should be searched for among host
genes that are also rapidly evolving, with prime candidates in
gametogenesis, meiosis, reproduction (37), and innate immunity
responses (38). An exciting avenue for future research is to
identify the interacting endosymbiont-host proteins and deter-
mine whether these evolve by purifying, positive, or diversifying
selection within Wolbachia subpopulations.

The association between wRi and D. simulans is one of a few
Wolbachia infections that have been studied in natural popula-
tions. Using wRi as the reference genome, it is now possible to
initiate comparative studies of wRi genomes extracted from
natural D. simulans populations with different phenotypes.
Although we have demonstrated stability over the breakpoints
during a period of 15 years in wRi strains kept in the laboratory,
other genetic changes, such as transposition of IS-elements, gene
inactivation by IS-element insertions, and novel gene acquisition
could occur rapidly in natural populations. For example, changes
in fecundity have been observed during a 20-year period in a
natural D. simulans population infected with wRi in southern
California (18). The genetic basis of this and other rapidly
changing phenotypes can now be investigated.

Materials and Methods
Sequencing Strategies. wRi: Drosophila simulans Riverside eggs were collected
after 2 h and 1 to 2 ml of embryos were homogenized. A continuous renogra-
fin gradient (28%–45%) was used to concentrate Wolbachia cells. The 28% to
32% zone was collected and placed in agarose plugs that were treated with
bacterial cell lysis and proteinase K solution. To remove contaminating host
DNA, the plugs were run on a 1% Seakem Gold agarose (FMC BioProducts) gel
for 24 h and the isolated DNA was subsequently used for library construction
in a modified M13 vector as described previously (39). From the M13 library,
34,322 reads were sequenced, of which 19,727 were present in the final
assembly, resulting in an overall 8.2-times coverage. An additional 18,031
reads were generated during gap closure and finishing.

wUni: DNA was isolated from 300 dissected ovaries from adult females
Muscidifurax uniraptor using a CTAB protocol, followed by lysozyme treat-
ment and chloroform extraction. Primers were designed based on the genome
sequence of Wolbachia strain wMel, to amplify 1,100-bp products with 300-bp
overlap on both ends to the adjacent product. Primers that successfully
amplified short PCR products were selected and combined to generate long-
range PCR products, where short products did not amplify. Next, 26,834 reads
were sequenced and assembled into 287 contigs, of which 106 were longer
than 2 kb. Short PCR-products were sequenced directly and long products
were sheared by nebulization and cloned into the pSMART-HCKan vector
before sequencing.

Verifying the wRi Genome Assembly. The wRi assembly was confirmed over
each IS-element or inferred breakpoint using genomic DNA from wRi isolated
from D. simulans and other infected hosts using PCR with specific primers. The
size of the assembled genome wRi is slightly lower than the 1.66 Mb previously
estimated from pulse-field gel electrophoresis (40). However, the relative
order of the observed restriction fragments matches those predicted from the
genome sequence, except that the sizes of the individual fragments appear to
have been systematically overestimated in the pulsed-field gel electrophoretic
-analysis.

Informatics. Assembly was performed with PHRED-PHRAP-CONSED (41–43).
Protein-coding genes were identified with GLIMMER (44) and CRITICA (45)
and tRNA genes by tRNAscan-SE (46). Putative functions were inferred using
BLAST against the National Center for Biotechnology Information databases
and InterProScan (47). Repeat identification was made using MUMmer (48).
Codeml, PAML 3.14 (49) was used to calculate substitution rates. Orthologs
used for Ks calculations were retrieved by reciprocal best blast with additional
cutoffs. RDP3 (23) was used to check nucleotide alignments for intragenic
recombination using 6 methods, RDP, Geneconv, Bootscan, MaxChi, Chi-
maera, and 3Seq, with default settings except for window and step sizes.
Sequences of the minor capsid gene were aligned with CLUSTALW (50) on the
protein level and back-translated to nucleotide sequences. The phylogeny was
reconstructed using MrBayes 3.12 (51) with the GTR�G model and run for
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10,000,000 generations. Ankyrin repeats were found with the ANK HMM from
PFAM (52) running HMMER 2.0 (53). An amino acid alignment was produced
with hmmalign and then back-translated to nucleotides. The phylogeny was
reconstructed using MrBayes3.12 (51) under the GTR�I�G model and run for
27,000,000 generations. For both trees, sampling was made every one-
hundredth generation with 2 runs of 4 chains and default priors and a
consensus trees were constructed using a ‘‘burnin’’ of 25%.

Transcription Analyses. For each of the tested Wolbachia-Drosophila associa-
tions, 300 testis and 150 ovaries were dissected from adults (1-day-old males
and 3-day-old females). Embryos were collected every 2 h and late embryos
every 16 h. Total RNA was extracted using TRIzol (Invitrogen) and treated with
RNase-free DNase (Invitrogen). First-strand cDNA was synthesized from 5 �g
of total RNA using reverse transcriptase (SuperScript III; Invitrogen) and

random primers (Promega), and thereafter treated with RNase H. For each
gene, specific primers were designed based on the corresponding wRi gene
nucleotide sequence and used for PCR amplification
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